
How to Play Unique Games against a Semi-Random Adversary

Study of Semi-Random Models of Unique Games

Alexandra Kolla

Microsoft Research

Konstantin Makarychev

IBM Research

Yury Makarychev

TTIC

Abstract— In this paper, we study the average case complexity
of the Unique Games problem. We propose a semi-random model,
in which a unique game instance is generated in several steps. First
an adversary selects a completely satisfiable instance of Unique
Games, then she chooses an ε–fraction of all edges, and finally
replaces (“corrupts”) the constraints corresponding to these edges
with new constraints. If all steps are adversarial, the adversary
can obtain any (1 − ε)–satisfiable instance, so then the problem
is as hard as in the worst case. We show however that we can
find a solution satisfying a (1 − δ) fraction of all constraints in
polynomial–time if at least one step is random (we require that the
average degree of the graph is Ω̃(log k)). Our result holds only for
ε less than some absolute constant. We prove that if ε ≥ 1/2, then
the problem is hard in one of the models, that is, no polynomial–
time algorithm can distinguish between the following two cases: (i)
the instance is a (1− ε)–satisfiable semi–random instance and (ii)
the instance is at most δ–satisfiable (for every δ > 0); the result
assumes the 2–to–2 conjecture.

Finally, we study semi-random instances of Unique Games that
are at most (1 − ε)–satisfiable. We present an algorithm that
distinguishes between the case when the instance is a semi-random
instance and the case when the instance is an (arbitrary) (1− δ)–
satisfiable instances if ε > cδ (for some absolute constant c).

1. INTRODUCTION

In this paper, we study the average case complexity of

the Unique Games problem in a semi-random model. In the

Unique Games problem, we are given a graph G = (V,E),
a set of labels [k] = {0, . . . , k−1} and a set of permutations

πuv on [k], one permutation for every edge (u, v). Our goal

is to assign a label (or state) xu ∈ [k] to every vertex u so as

to maximize the number of satisfied constraints of the form

xv = πuv(xu). The value of the solution is the number of

satisfied constraints.

The problem is conjectured to be very hard in the worst

case. The Unique Games Conjecture (UGC) of Khot [17]

states that for every positive ε, δ and sufficiently large

k, it is NP-hard to distinguish between the case where

at least a 1 − ε fraction of constraints is satisfiable, and

the case where at most a δ fraction of all constraints is

satisfiable. The conjecture implies strong inapproximability

results for many problems such as MAX CUT [18], Vertex

Cover [19], Maximum Acyclic Subgraph [14], Max k-

CSP [24], [15], [26], which are not known to follow from

standard complexity assumptions.

This is an extended abstract. The full version of this paper is available
at http://arxiv.org/abs/1104.3806.

There has been a lot of research on the Unique Games

Conjecture in recent years. One direction of research has

focused on developing polynomial-time approximation al-

gorithms for arbitrary instances of unique games. The first

algorithm was presented by Khot in his original paper on the

Unique Games Conjecture [17], and then several algorithms

were developed in papers by Trevisan [27], Gupta and

Talwar [10], Charikar, Makarychev and Makarychev [8],

Chlamtac, Makarychev, and Makarychev [9]. Another di-

rection of research has been to study subexponential ap-

proximation algorithms for Unique Games. The work was

initiated by Kolla [21] and Arora, Impagliazzo, Matthews

and Steurer [4] who proposed subexponential algorithms for

certain families of graphs. Then, in a recent paper, Arora,

Barak and Steurer [3] gave a subexponential algorithm for

arbitrary instances of Unique Games.
These papers, however, do not disprove the Unique Games

Conjecture. Moreover, Khot and Vishnoi [20] showed that

it is impossible to disprove the Conjecture by using the

standard semidefinite programming relaxation for Unique

Games, the technique used in the best currently known

polynomial-time approximation algorithms for general in-

stances of Unique Games. Additionally, Khot, Kindler,

Mossel, and O’Donnell [18] proved that the approximation

guarantees obtained in [8] cannot be improved if UGC is

true (except possibly for lower order terms).
All that suggests that Unique Games is a very hard prob-

lem. Unlike many other problems, however, we do not know

any specific families of hard instances of Unique Games. In

contrast, we do know many specific hard instances of other

problems. Many such instances come from cryptography;

for example, it is hard to invert a one-way function f on

a random input, it is hard to factor the product z = xy of

two large prime numbers x and y. Consequently, it is hard

to satisfy SAT formulas that encode statements “f(x) = y”

and “xy = z”. There are even more natural families of hard

instances of optimization problems; e.g.

• 3-SAT: Feige’s 3-SAT Conjecture [11] states that no

randomized polynomial time algorithm can distinguish

random instances of 3-SAT (with a certain clause to

variable ratio) from (1 − ε)–satisfiable instances of 3-

SAT (with non-negligible probability).

• Linear Equations in Z/2Z: Alekhnovich’s Conjec-

ture [1] implies that given a random (1− ε)–satisfiable

instance of a system of linear equations in Z/2Z,

no randomized polynomial time algorithm can find a

solution that satisfies a 1/2 + δ fraction of equations

(for certain values of parameters ε and δ).

• Maximum Clique Problem: It is widely believed [16]

that no randomized polynomial time algorithm can find

a clique of size (1+ε) log2 n in a G(n, 1/2) graph with

a planted clique of size m = n1/2−δ (for every constant

ε, δ > 0).

No such results are known or conjectured for Unique

Games. In order to better understand Unique Games, we

need to identify, which instances of the problem are easy

and which are potentially hard. That motivated the study

of specific families of Unique Games. Barak, Hardt, Haviv,

Rao, Regev and Steurer [6] showed that unique game

instances obtained by parallel repetition are “easy” (we

say that a family of (1 − ε)–satisfiable instances is easy
if there is a randomized polynomial-time algorithm that

satisfies a constant fraction of constraints). Arora, Khot,

Kolla, Steurer, Tulsiani, and Vishnoi [5] showed that unique

games on spectral expanders are easy (see also Makarychev

and Makarychev [23], and Arora, Impagliazzo, Matthews

and Steurer [4]).

In this paper, we continue this line of research by in-

vestigating the hardness of semi-random (semi-adversarial)

instances of Unique Games. In a semi-random model, an

instance is generated in several steps; at each step, choices

are either made adversarially or randomly. Semi-random

models were introduced by Blum and Spencer [7] (who con-

sidered semi-random instances of the k-coloring problem)

and then studied by Feige and Kilian [12], and Feige and

Krauthgamer [13].

In this paper, we propose and study a model, in which

a (1 − ε)–satisfiable unique game instance is generated as

follows:

1) Graph Selection Step. Choose the constraint graph

G = (V,E) with n vertices and m edges.

2) Initial Instance Selection Step. Choose a set of

constraints {πuv}(u,v)∈E so that the obtained instance

is completely satisfiable.

3) Edge Selection Step. Choose a set of edges Eε of

size εm = ε|E|.
4) Edge Corruption Step. Replace the constraint for

every edge in Eε with a new constraint.

Note that if an adversary performs all four steps, she can

obtain an arbitrary (1 − ε)–satisfiable instance, so, in this

fully–adversarial case, the problem is as hard as in the

worst case. The four most challenging semi-random cases

are when choices at one out of the four steps are made

randomly, and all other choices are made adversarially. The

first case – when the graph G is random and, in particular,

is an expander – was studied by Arora, Khot, Kolla, Steurer,

Tulsiani, and Vishnoi [5], who showed that this case is easy.

We present algorithms for the other three cases that satisfy

a (1−δ) fraction of constraints (if the average degree of G is

at least Ω̃(log k) and ε is less than some absolute constant).

Theorem 1.1. There exist ε0 > 0, k0 ≥ 2, C > 0, such that
for every k ≥ k0, ε ∈ (0, ε0), δ > Cmax(ε, 1/k), there
exists a randomized polynomial time algorithm that given
a semi-random instance of Unique Games with parameter
ε generated in one of the three models (see Section 2.2
for details) on a graph G with average degree at least
Ω̃(log k)δ−3, finds a solution of value (1−δ) with probability
1 − o(1) taken over random choices of the semi-random
adversary and the random choices of the algorithm.

We analyze each model separately and establish more

precise bounds on the parameters for each model. In the

conference version of this paper, we present the algorithm

for the “random edges, adversarial constraints” model for

specific values of ε and δ in Theorem 3.1. We also briefly

describe the algorithm for “adversarial edges, random con-

straints” in Theorem 4.1. We present more general results

and full proofs in the full version of the paper [22].

In our opinion, this is a very surprising result since

the adversary has a lot of control over the semi-random

instance. We want to point out that previously known

approximation algorithms for Unique Games cannot find

good solutions of semi-random instances. Also techniques

developed for analyzing semi-random instances of other

problems such as local analysis, statistical analysis, spectral

gap methods, standard semidefinite programming techniques

seem to be inadequate to deal with semi-random instances

of Unique Games. To illustrate this point, consider the

following example. Suppose that the set of corrupted edges

is chosen at random, and all other steps are adversarial (“the

random edges, adversarial constraints case”). The adversary

generates a semi-random instance as follows. It first prepares

two instances I1 and I2 of Unique Games. The first instance

I1 is the Khot–Vishnoi instance [20] on a graph G with the

label set [k] = {0, . . . , k−1} and permutations {π1uv} whose

SDP value is ε′ < ε/2 but which is only k−Ω(ε
′) satisfiable.

The second instance I2 is a completely satisfiable instance

on the same graph G with the label set {k, . . . , 2k − 1}
and permutations π2uv = id. She combines these instances

together: the combined instance is an instance on the graph

G with the label set [2k] = {0, . . . , 2k − 1}, and permu-

tations {πuv : πuv(i) = π1uv(i) if i ∈ [k], and πuv(i) =
π2uv(i), otherwise}. Once the adversary is given a random

set of edges Eε, she randomly changes (“corrupts”) per-

mutations {π2uv}(u,v)∈Eε
but does not change π1uv , and then

updates permutations {πuv}(u,v)∈Eε
accordingly. It turns out

that the SDP value of I2 with corrupted edges is very close

to ε, and therefore, it is larger than ε′, the SDP value of I1
(if we choose parameters properly). So in this case the SDP

solution assigns positive weight only to the labels in [k] from

the first instance. That means that the SDP solution does

not reveal any information about the optimal solution (the

only integral solution we can obtain from the SDP solution

has value k−Ω(ε)). Similarly, algorithms that analyze the

spectral gap of the label extended graph cannot deal with this

instance. Of course, in this example, we let our first instance,

I1, to be the Khot–Vishnoi instance because it “cheats”

SDP based algorithms. Similarly, we can take as I1 another

instance that cheats another type of algorithms. For instance,

if UGC is true, we can let I1 to be a (1 − ε′)–satisfiable

unique game that is indistinguishable in polynomial-time

from a δ–satisfiable unique game.

Our algorithms work only for values of ε less than some

absolute constants. We show that this restriction is essential.

For every ε ≥ 1/2 and δ > 0, we prove that no polynomial

time algorithm satisfies a δ fraction of constraints in the

“adversarial constraints, random edges” model (only the

third step is random), assuming the 2–to–2 conjecture.

One particularly interesting family of semi-random unique

games (captured by our model) are mixed instances. In

this model, the adversary prepares a satisfiable instance,

and then chooses a δ fraction of edges and replaces them

with adversarial constraints (corrupted constraints); i.e. she

performs all four steps in our model and can obtain an arbi-

trary (1−δ)–satisfiable instance. Then the “nature” replaces

every corrupted constraint with the original constraint with

probability 1− ε. In our model, this case corresponds to an

adversary who at first prepares a list of corrupted constraints

π′uv , and then at the fourth step replaces constraints for edges

in Eε with constraints π′uv (if an edge from Eε is not in

the list, the adversary does not modify the corresponding

constraint).

Distinguishing Semi-Random At Most (1− ε) Satisfi-
able Instances From Almost Satisfiable Instances We also

study whether semi-random instances of Unique Games that

are at most (1 − ε)–satisfiable can be distinguished from

almost satisfiable instances of Unique Games. This ques-

tion was studied for other problems. In particular, Feige’s

“Random 3-SAT Conjecture” states that it is impossible to

distinguish between random instances of 3-SAT (with high

enough clause density) and (1 − δ)–satisfiable instances

of 3-SAT. In contrast, we show that in the “adversarial

edges, random constraints” case (the fourth step is random),

semi-random (1− ε)–satisfiable instances can be efficiently

distinguished from (arbitrary) (1 − δ)–satisfiable instances

when ε > cδ (for some absolute constant c). (This problem,

however, is meaningless in the other two cases — when

the adversary corrupts the constraints — since then she can

make the instance almost satisfiable even if ε is large.)

Linear Unique Games We separately consider the case

of Linear Unique Games (MAX Γ-LIN). In the semi-random

model for Linear Unique Games, we require that constraints

chosen at the second and fourth steps are of the form

xu − xv = suv(mod k). Note that in the “random edges,

adversarial constraints” model, the condition that constraints

are of the form xu − xv = suv(mod k) only restricts

the adversary (and does not change how the random edges

are selected). Therefore, our algorithm for semi-random

general instances still applies to this case. However, in the

“adversarial edges, random constraints” case, we need to

sample constraints from a different distribution of permu-

tations at the fourth step: for every edge (u, v) we now

choose a random shift permutation xv = xu − suv , where

suv ∈U Z/kZ. We show that our algorithm still works

in this case; the analysis however is different. We believe

that it is of independent interest. We do not consider the

case where only the initial satisfying assignment is chosen

at random, since for Linear Unique Games, the initial as-

signment uniquely determines the constraints between edges

(specifically, suv = xu − xv(mod k)). Thus the case when

only the second step is random is completely adversarial.

It is interesting that systems of linear equations affected

by noise with more than two variables per equations are

believed to be much harder. Suppose we have a consistent

system of linear equations Ax = b over Z/2Z. Then we ran-

domly change an ε fraction of entries of b. Alekhnovich [1]

conjectured that no polynomial-time algorithm can distin-

guish the obtained instance from a completely random

instance even if ε ≈ n−c, for some constant c (Alekhnovich

stated his conjecture both for systems with 3 variables

per equation and for systems with an arbitrary number of

variables per equation).

Our results can be easily generalized to Unique Games

in arbitrary Abelian groups. We omit the details in the

conference version of this paper.

1.1. Brief Overview of Techniques

We use different techniques to analyze different models.

First, we outline how we solve semi-random unique games

in the “adversarial constraints, random edges” model (see

Section 3 for details). As we explained above, we cannot use

the standard SDP relaxation to solve semi-random instances

in this model. Instead, we consider a very unusual SDP

program for the problem, which we call “Crude SDP” (C-

SDP). This SDP is not even a relaxation for Unique Games

and its value can be large when the instance is satisfiable.

The C-SDP assigns a unit vector ui to every vertex (u, i)
of the label–extended graph (for a description of the label–

extended graph we refer the reader to Section 2). We use

vectors ui to define the length of edges of the label–extended

graph: the length of ((u, i), (v, j)) equals ‖ui − vj‖2. Then

we find super short edges w.r.t. the C-SDP solution, i.e.,

those edges that have length O(1/ log k). One may expect

that there are very few short edges since for a given C-SDP

most edges will be long if we choose the unique games

instance at random. We prove, however, that for every C-

SDP solution {ui}, with high probability (over the semi-

random instance) either

1) there are many super short edges w.r.t. {ui} in the

satisfiable layer of the semi-random game,

2) or there is another C-SDP solution of value less than

the value of the solution {ui}.
Here, as we describe later on in Section 2, the “satisfiable

layer” corresponds to the representation of the satisfying

assignment in the label–extended graph. The proof shows

how to combine the C-SDP solution with an integral solution

so that the C-SDP value goes down unless almost all edges

in the satisfiable layer are super short. We then show that this

claim holds with high probability not only for one C-SDP

solution but also for all C-SDP solutions simultaneously. The

idea behind this step is to find a family F of representative

C-SDP solutions and then use the union bound. One of the

challenges is to choose a very small family F , so that we

can prove our result under the assumption that the average

degree is only Ω̃(log k). The result implies that w.h.p. there

are many super short edges w.r.t. the optimal SDP solution.

Now given the set of super short edges, we need to find

which of them lie in the satisfiable layer. We write and

solve an LP relaxation for Unique Games, whose objective

function depends on the set of super short edges. Then we

run a rounding algorithm that rounds the C-SDP and LP

solutions to a combinatorial solution using a variant of the

“orthogonal separators” technique developed in [9].

Our algorithm for the “adversarial edges, random con-

straints” model is quite different. First, we solve the standard

SDP relaxation for Unique Games. Now, however, we cannot

claim that many edges of the label–extended graph are short.

We instead find the “long” edges of the graph G w.r.t. the

SDP solution. We prove that most corrupted edges are long,

and there are at most O(ε) long edges in total (Theorem 4.4).

We remove all long edges, and then solve the obtained

highly–satisfiable instance using the algorithm of Charikar,

Makarychev and Makarychev [8].

We also present algorithms for two more cases: the

case of “adversarial edges, random constraints” where the

constraints are of the special form MAX-Γ-LIN and the case

of “random initial constraints”.

Due to space limitations we focus on the “random edges,

adversarial constraints” model in the conference version

of this paper. Moreover, to simplify exposition we do not

present the main result in full generality. We give more

general results and full proofs in the full version of the

paper [22].

2. NOTATION AND PRELIMINARIES

2.1. Label-Extended Graph and SDP Relaxation

Label-Extended Graph For a given instance of Unique

Games on a constraint graph G = (V,E), with alphabet

size k and constraints {πuv}(u,v)∈E we define the Label-
Extended graph M(V ′ = V × [k], E′) associated with that

instance as follows: M has k vertices Bv = {v0, · · · , vk−1}

for every vertex v ∈ V . We refer to this set of vertices as the

block corresponding to v. M has a total of |V | blocks, one

for each vertex of G. Two vertices ui, vj ∈ V ′ are connected

by an edge if (u, v) ∈ E and πuv(i) = j.

We refer to a set of nodes L = {u(z)i(z)}|V |z=1 as a “layer”

if L contains exactly one node from each block Bu(z) . We

note that a layer L can be seen as an assignment of labels

to each vertex of G. If a layer L consists of vertices with

the same index i, i.e. L = {u(z)i }|V |z=1, we will call L the i-th
layer.

Standard SDP for Unique Games Our algorithms use the

following standard SDP relaxation for Unique Games (see

also [17], [20], [8], [9]).

min
1

2|E|
∑

(u,v)∈E

∑
i∈[k]

‖ui − vπuv(i)‖2

subject to:

k∑
i=1

‖ui‖2 = 1 ∀i ∈ [k];

〈ui, uj〉 = 0 ∀i, j ∈ [k] : i 	= j;

〈ui, vj〉 ≥ 0 ∀u, v ∈ V, i, j ∈ [k];
‖ui − wl‖2 + ‖wl − vj‖2 ≥ ‖ui − vj‖2

for all u, v, w ∈ V, i, j, l ∈ [k].
In this relaxation, we have a vector variable ui for every

vertex u and label i. In the intended solution, ui is an

indicator variable for the event “xu = i”. That is, if xu = i
then ui = e; otherwise, ui = 0; where e is a fixed

unit vector. The objective function measures the fraction of

unsatisfied constraints: if the unique game has value 1− ε,

then the value of the intended SDP solution equals ε (and,

therefore, the value of the optimal SDP solution is at most

ε). Given an SDP solution of value ε, the approximation

algorithm of Charikar, Makarychev, and Makarychev [8]

finds a solution of value 1−O(
√
ε log k). We will use this

approximation algorithm as a subroutine (we will refer to it

as CMMa). We will also use the following fact.

Lemma 2.1 (see e.g. Lemmas A.1 and A.2 in [9]). Suppose,
we are given two random Gaussian variables γ1 and γ2 with
mean 0 and variance 1 (not necessarily independent), and
a parameter k ≥ 2. Let η = 1/1000, α = η/k. Consider
a threshold t s.t. Pr(γ1 ≥ t) = Pr(γ2 ≥ t) = α. Then
Pr(γ1 ≥ t and γ2 ≥ t) ≥ α

(
1 −

√
1
c∗ Var(γ1 − γ2) log k

)
for some absolute constant c∗.

2.2. Models

In what follows, we will use several models for generating

semi-random (1−ε)–satisfiable instances of Unique Games:

1) “Random Edges, Adversarial Constraints” Model.
The adversary selects a graph G(V,E) on n ver-

tices and m edges and an initial set of constraints

{πuv}(u,v)∈E so that the instance is completely sat-

isfiable. Then she adds every edge of E to a set

Eε with probability ε (the choices for different edges

are independent). Finally, the adversary replaces the

constraint for every edge in Eε with a new constraint

of her choice. Note that this model also captures the

case where at the last step the constraints for every

edge in Eε are replaced with a new random constraint

(random adversary).

2) “Adversarial Edges, Random Constraints” Model.
The adversary selects a graph G(V,E) on n ver-

tices and m edges and an initial set of constraints

{πuv}(u,v)∈E so that the instance is completely sat-

isfiable. Then she chooses a set Eε of ε|E| edges.

Finally, the constraint for every edge in Eε is randomly

replaced with a new constraint. We will also consider

some variations of this model, where at all steps

the constraints are MAX Γ-LIN. In particular, at the

last step, choosing a random constraint of the form

MAX Γ-LIN, corresponds to choosing a random value

s ∈ [|Γ|].
3) “Random Initial Constraints” Model. The adversary

chooses the constraint graph G = (V,E) and a

“planted solution” {xu}. Then for every edge (u, v) ∈
E, she randomly chooses a permutation (constraint)

πuv such that πuv(xu) = xv (among (k−1)! possible

permutations). Then the adversary chooses an arbitrary

set Eε of edges of size at most ε|E| and replaces

constraint πuv with a constraint π′uv of her choice for

(u, v) ∈ Eε.

Without loss of generality, we will assume, when we

analyze the algorithms, that the initial completely satisfying

assignment corresponds to the “zero” layer. I.e. for every

edge (u, v), πuv(0) = 0. Note that in reality, the real

satisfying assignment is hidden from us.

3. RANDOM EDGES, ADVERSARIAL CONSTRAINTS

In this section, we study the “random edges, adversarial

constraints” model and prove the following result.

Theorem 3.1. There exists a polynomial-time approximation
algorithm, that given an instance of unique games from the
“random edges, adversarial constraints” model on graph
G with Cn log k(log log k)2 edges (C is a sufficiently large
absolute constant) and ε ≤ 1/4, finds a solution of value
1/2.

The main challenge in solving “random edges, adversarial

constraints” unique games is that the standard SPD relax-

ation may assign zero vectors to layers corresponding to the

optimal solution (as well as to some other layers) and assign

non-zero vectors to layers, where every integral solution

satisfies very few constraints. To address this issue, we

introduce a new slightly modified SDP. As usual the SDP has

a vector ui for every vertex–label pair (u, i) ∈ V × [k]. We

require that vectors ui, ui′ corresponding to the same vertex

u are orthogonal: 〈ui, ui′〉 = 0 for all u ∈ V and i, i′ ∈ [k],
i 	= i′. We also impose triangle inequality constraints:

1

2
‖ui − vj‖2 + 1

2
‖ui′ − vj‖2 ≥ 1,

for all (u, v) ∈ E and i, i′, j ∈ [k], i 	= i′; and require that

all vectors have unit length: ‖ui‖ = 1 for all u ∈ V and

i ∈ [k]. Observe, that our SDP is not a relaxation1, since

the integer solution does not satisfy the last constraint. The

objective function is

min
∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖ui − vj‖2
2

.

Usually, this objective function measures the number of

unsatisfied unique games constraints. However, in our case

it does not. In fact, it does not measure any meaningful

quantity. Note, that the value of the SDP can be arbitrary

large even if the unique games instance is satisfiable. We

call this SDP the Crude SDP or C-SDP. Given a C-SDP

solution, we define the set of super short edges, which play

the central role in our algorithm.

Definition 3.2. We say that an edge ((u, i), (v, j)) in the
label–extended graph is super short, if ‖ui − vj‖2 ≤
c∗η2/ log k, here c∗ is an absolute constant defined in
Lemma 2.1; η = 1/1000. We denote the set of all super
short edges by Γ.

In Section 3.2, we prove the following surprising result

(Theorem 3.3), which states that all but very few edges in

the zero level of the label-extended graph are super short.

Theorem 3.3. Let k ∈ N (k ≥ 2), ε ∈ [0, 1/4], η = 1/1000,
and let G = (V,E) be an arbitrary graph with at least
Cn log k(log log k)2 edges. Consider a semi-random in-
stance of Unique Games in the “random edges, adversarial
constraints” model. Let {ui} be the optimal solution of the
C-SDP. Then with probability tending to 1 (uniformly as
n→∞) the set

Γ0 = Γ ∩ {((u, 0), (v, 0)) : (u, v) ∈ E}
contains at least (1− ε− η)|E| edges.

We proceed as follows. First, we solve the C-SDP. Then,

given the C-SDP solution, we write and solve an LP to obtain

weights x(u, i) ∈ [0, 1] for every (u, i) ∈ V × [k]. These

weights are in some sense substitutes for lengths of vectors

in the standard SDP relaxation. In the LP, for every vertex

u ∈ V , we require that∑
i∈[k]

x(u, i) = 1.

1Unless, the unique game is from a special family like Linear Unique
Games.

The objective function is

max
∑

((u,i),(v,j))∈Γ
min(x(u, i), x(v, j))

(note that the objective function depends on the C-SDP

solution). Denote the value of the LP by LP . The intended

solution of this LP is x(u, 0) = 1 and x(u, i) = 0 for

i 	= 0. Since the LP contribution of every edge in Γ0 is 1,

the value of the intended solution is at least |Γ0|. Applying

Theorem 3.3, we get LP ≥ |Γ0| ≥ (1−ε−η)|E| > 5/7 |E|.
In the next section, we present an approximation algorithm

(which rounds C-SDP and LP solutions) and its analysis.

We prove the approximation guarantee in Lemma 3.5, which

implies Theorem 3.1.

3.1. SDP and LP Rounding

We now present an algorithm that given a C-SDP solution

{ui} and an LP solution {x(u, i)} finds an integer solution.

This algorithm uses methods developed in CMMa [8] and

CMMb [9]. We first present a procedure for sampling subsets

of vertex–label pairs, which is an analog of the algorithm

for finding orthogonal separators.

LP Weighted Orthogonal Separators
Input: An SDP solution {ui}, an LP solution {x(u, i)}.
Output: A set S of label vertex pairs (u, i).

1) Set a parameter α = η/k, which we call the probabil-

ity scale.

2) Generate a random Gaussian vector g with indepen-

dent components distributed as N (0, 1).
3) Fix a threshold t s.t. Pr(ξ ≥ t) = α, where ξ ∼
N (0, 1).

4) Pick a random uniform value r in the interval (0, 1).
5) Find set

S = {(u, i) ∈ V × [k] : 〈ui, g〉 ≥ t and x(u, i) ≥ r} .
6) Return S.

The rounding algorithm is given below.

LP and SDP Based Rounding Algorithm
Input: An instance of unique games.

Output: An assignment of labels to the vertices.

1) Solve the SDP.

2) Find the set of all super short edges Γ.

3) Solve the LP.

4) Mark all vertices unprocessed.

5) while (there are unprocessed vertices)

• Sample a set S of vertex–label pairs using LP

weighted orthogonal separators.

• For all unprocessed vertices u:

– Let Su = {i : (u, i) ∈ S}
– If Su contains exactly one element i, assign

label i to u and mark u as processed.

If after nk/α iterations, there are unprocessed vertices, the

algorithm assigns arbitrary labels to them and terminates.

Lemma 3.4. Let S be an LP weighted orthogonal separator.
For every ((u, i), (v, j)) ∈ Γ and (u, i′) ∈ V × [k] (i′ 	= i),

1) Pr((u, i) ∈ S) = αx(u, i).

2) Pr((u, i) ∈ S and (v, j) ∈ S) ≥
α(1− η)min(x(u, i), x(v, j)).

3) Pr((u, i) ∈ S; (v, j) ∈ S; (u, i′) ∈ S) ≤
αη/k ·min(x(u, i), x(v, j)).

Proof: We have

Pr((u, i) ∈ S) = Pr(〈ui, g〉 ≥ t and x(u, i) ≥ r)

= Pr(〈ui, g〉 ≥ t) Pr(x(u, i) ≥ r)

= αx(u, i).

Then, by Lemma 2.1 (using Var(〈ui, g〉 − 〈vj , g〉) = ‖ui −
vj‖2 ≤ c∗η2/ log k),

Pr((u, i) ∈ S and (v, j) ∈ S)

= Pr(〈ui, g〉 ≥ t and 〈vj , g〉 ≥ t)

× Pr(min(x(u, i), x(v, j)) ≥ r)

≥ α(1− η)min(x(u, i), x(v, j)).

Finally, we have (below we use that 〈ui, g〉 and 〈ui′ , g〉 are

independent random variables)

Pr((u, i) ∈ S; (v, j) ∈ S; (u, i′) ∈ S)

≤ Pr(〈ui, g〉 ≥ t) Pr(〈ui′ , g〉 ≥ t)

Pr(min(x(u, i), x(v, j)) ≥ r)

= α2min(x(u, i), x(v, j))

= α(η/k) min(x(u, i), x(v, j)).

Lemma 3.5. Given a C-SDP solution {ui} and an LP
solution {x(u, i)} of value at least LP ≥ 5/7 |E|, the
algorithm finds a solution to the unique games instance
that satisfies at least a 1/2 fraction of all constraints in
the expectation.

Proof: Consider an arbitrary edge (u, v) ∈ E. We

estimate the probability that the algorithm assigns labels

that satisfy the constraint πuv . For simplicity of presentation,

assume that πuv(i) = i (we may always assume this by re-

naming the labels of v). Let δi(u, v) = min(x(u, i), x(v, i))
if ((u, i), (v, i)) ∈ Γ; and δi(u, v) = 0, otherwise. Let

δ(u, v) =
∑

i δi(u, v). Consider an iteration at which both

u and v have not yet been processed. By Lemma 3.4 (item

2), if ((u, i), (v, i)) ∈ Γ, then Pr(i ∈ Su and i ∈ Sv) ≥
α(1−η)min(x(u, i), x(v, i)). Then, by Lemma 3.4 (item 3)

and the union bound, the probability that Su or Sv contains

more than one element and i ∈ Su, i ∈ Sv is at most

2αηmin(x(u, i), x(v, i)). Hence, the algorithm assigns i to

both u and v with probability at least

α(1 − 3η)min(x(u, i), x(v, i)) = α(1 − 3η)δi(u, v).

The probability that the algorithm assigns the same label to

u and v is at least∑
i:((u,i),(v,i))∈Γ

α(1− 3η)δi(u, v) = α(1− 3η)δ(u, v).

The probability that the algorithm assigns a label to u is

at most α and similarly the probability that the algorithm

assigns a label to v is at most α. Thus the probability that

it assigns a label to either u or v is at most α(2 − (1 −
3η)δ(u, v)).

The probability that the algorithm assigns the same label

to u and v at one of the iterations is at least (note that

the probability that there are unlabeled vertices when the

algorithm stops after nk/α iterations is exponentially small,

therefore, for simplicity we may assume that the number of

iterations is infinite)

∞∑
t=0

(1− α(2− (1− 3η)δ(u, v)))tα(1− 3η)δ(u, v) =

α(1− 3η)δ(u, v)

α(2− (1− 3η)δ(u, v))
=

(1− 3η)δ(u, v)

2− (1− 3η)δ(u, v)
.

The function t �→ t/(2− t) is convex on (0, 2) and

1

|E|
∑

(u,v)∈E
(1− 3η)δ(u, v) ≥ 5/7 (1− 3η) > 2/3.

Thus, by Jensen’s inequality, the expected fraction of satis-

fied constraints is at least

1

|E|
∑

(u,v)∈E

(1− 3η)δ(u, v)

2− (1− 3η)δ(u, v)
≥ 2/3

2− 2/3
=
1

2
.

3.2. Lower Bound on the Number of Super Short Edges:
Proof of Theorem 3.3

We need the following lemma.

Lemma 3.6. Let γ ∈ (0, 1/2), ε ∈ (0, 1/4). Let G = (V,E)
be a graph on n vertices with |E| ≥ Cnγ−1 log(γ−1) for
some significantly large absolute constant C. Suppose, that
{Zuv}(u,v)∈E are i.i.d. Bernoulli random variables taking
values 1 with probability ε and 0 with probability (1 − ε).
Define the payoff function p : {0, 1} × R→ R as follows

p(z, α) =

{
−2α, if z = 1;

α, if z = 0.

Then, with probability at least 1− e−n for every set of unit
vectors {u0}u∈V satisfying

1

2

∑
(u,v)∈E

‖u0 − v0‖2 ≥ γ|E| (1)

the following inequality holds∑
(u,v)∈E

p(Zuv, ‖u0 − v0‖2) > 0. (2)

We need the following dimension reduction lemma, which

is based on the Johnson–Lindenstrauss Lemma and is fairly

standard (see the full version of the paper for a proof).

Lemma 3.7. For every ν ∈ (0, 1/2) and η = 1/1000, there
exists a set N of unit vectors of size eO(log

2(1/ν)), such that
for every set of unit vectors U and every set of pairs E ⊂
U ×U , there exists a set E∗ ⊂ E of size at least (1− ν)|E|
and a map ϕ : U → N satisfying the following property:
for every (u, v) ∈ E∗,

(1−η)‖u−v‖2−ν ≤ ‖ϕ(u)−ϕ(v)‖2 ≤ (1+η)‖u−v‖2+ν.

We call the set N a net.

Proof of Lemma 3.6: Let ν = ηγ and N be the net

of size at most eC
′(log2(1/γ)) from Lemma 3.7 (C ′ is a

constant). Suppose, that for a given realization {Z∗uv}(u,v)∈E
of {Zuv}(u,v)∈E there exists a set of unit vectors {u0}u∈V
satisfying condition (1) and violating (2). Embed vectors

{u0}u∈V into the net N using Lemma 3.7 so that for all

edges (u, v) ∈ E∗,

(1−η)‖u0−v0‖2−ηγ ≤ ‖u∗−v∗‖2 ≤ (1+η)‖u0−v0‖2+ηγ,
here u∗ is the image of u0; v∗ is the image of v0; and

|E∗| ≥ (1− ηγ)|E|.
We now derive inequalities similar to (1) and (2) for

vectors {u∗}u∈V . Write,∑
(u,v)∈E\E∗

‖u0−v0‖2 ≤ max
u,v∈V

{‖u0−v0‖2}·|E\E∗| ≤ 4ηγ|E|;

∑
(u,v)∈E∗

‖u0 − v0‖2 ≥ 2γ|E| − 4ηγ|E| = 2(1− 2η)γ|E|.

Hence,∑
(u,v)∈E

‖u∗ − v∗‖2 ≥
∑

(u,v)∈E

(
(1− η)‖u0 − v0‖2 − ηγ

)
≥ 2(1− η)(1− 2η)γ|E| − ηγ|E| ≥ γ|E|. (3)

Define a new payoff function (for z ∈ {0, 1}, α ≥ 0),

pη(z, α) =

{
−2 (1 + 2η)α, if z = 1;

(1− 2η)α, if z = 0.

Observe, that pη(z, α) ≤ p(z, α) for every α ≥ 0 and z ∈
{0, 1}. Moreover, for (u, v) ∈ E∗,

pη(z, ‖u∗ − v∗‖2) ≤ p(z, ‖u0 − v0‖2) + 3ηγ.

Thus, we have,∑
(u,v)∈E∗

pη(Z
∗
uv, ‖u∗ − v∗‖2)

≤ (∑
(u,v)∈E∗

p(Z∗uv, ‖u∗ − v∗‖2))+ 3ηγ|E∗|

≤ −(∑
(u,v)∈E\E∗

p(Z∗uv, ‖u∗ − v∗‖2))+ 3ηγ|E∗|

≤ 2 max
u,v∈V

{‖u∗ − v∗‖2}|E \ E∗|+ 3ηγ|E|
≤ 11ηγ|E|.

Then,∑
(u,v)∈E\E∗

pη(Z
∗
uv, ‖u∗ − v∗‖2) ≤

≤ 2(1 + 2η) max
u,v∈V

{‖u∗ − v∗‖2}|E \ E∗| ≤ 9ηγ|E|.

We get ∑
(u,v)∈E

pη(Z
∗
uv, ‖u∗ − v∗‖2) ≤ 20ηγ|E|. (4)

Thus, the existence of unit vectors {u0}u∈V satisfying

condition (1) and violating (2) implies the existence of

vectors {u∗}u∈V satisfying (3) and (4). We now show

that for a random {Zuv} such vectors {u∗} exist with

exponentially small probability.

Fix a sequence {u∗}u∈V with elements u∗ ∈ N satisfying∑
(u,v)∈E ‖u∗ − v∗‖ ≥ γ|E| (see (3)). Denote Yuv =

pη(Zuv, ‖u∗−v∗‖2). We would like to find an upper bound

on Pr(
∑

(u,v)∈E Yuv < 20ηγ|E|). Let μ = E
∑

(u,v)∈E Yuv ,

μuv = EYuv . Then,

μuv ≡ Epη(Zuv, ‖u∗ − v∗‖2)
= ((1− 2η)(1− ε)− 2(1 + 2η)ε) ‖u∗ − v∗‖2

≥ 1

4
‖u∗ − v∗‖2.

Hence, |Yuv| ≤ 2(1 + 2η)‖u∗ − v∗‖2 ≤ 10μuv a.s., and

μ = E

∑
(u,v)∈E

Yuv ≥ 1

4

∑
(u,v)∈E

‖u∗ − v∗‖2 ≥ γ

4
|E|.

By Hoeffding’s inequality,

Pr
(∑
(u,v)∈E

Yuv ≤ μ

2

)
≤ exp

(
− μ2

8
∑

(u,v)∈E(20μuv)2

)

≤ exp
(
− μ

3200maxμuv

)
≤ exp

(− μ

15000

) ≤ exp
(−C ′′γ|E|),

where C ′′ = 1/60000.

The number of all possible sequences {u∗}u∈V ⊂ N is

at most

|N |n = exp
(
C ′n log2(γ−1)

)
.

By the union bound with probability at least

1− exp(C ′n log(1/γ)− C ′′γ|E|) ≥ 1− exp(−n)

for random {Zuv}(u,v)∈E , there does not exist a set of unit

vectors {u0}u∈V satisfying condition (1) and violating (2).

Here we used that C is chosen to be sufficiently large

and, consecutively, |E| ≥ Cnγ−1 log(γ−1) ≥ ((C ′ +
1)/C ′′) γ−1 log(γ−1)n.

Proof of Theorem 3.3: Let {u∗i } be the optimal SDP

solution. Pick a unit vector e orthogonal to all vectors u∗i .

Define a new SDP solution uint
0 = e and uint

i = u∗i for

i 	= 0 (for all u ∈ V). Note that restricted to {uint
0 }u∈V this

solution is integral. Since {u∗i } is the optimal solution,∑
(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i−v∗j ‖2 ≤
∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖uint
i −vintj ‖2.

Denote by Eε the set of corrupted edges. Let Zuv = 1, if

(u, v) ∈ Eε and Zuv = 0, otherwise. Let Ẽε = {(u, v) ∈
E : πuv(0) 	= 0}. Clearly, Ẽε ⊂ Eε. Write,∑
(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 − ‖uint
i − vintj ‖2 =

=
∑

(u,v)∈E\Ẽε

‖u∗0 − v∗0‖2+

+
∑

(u,v)∈Ẽε

‖u∗0 − v∗πuv(0)
‖2 + ‖u∗πvu(0)

− v∗0‖2

−
∑

(u,v)∈Ẽε

‖uint
0 − vintπuv(0)

‖2 + ‖uint
πvu(0)

− vint0 ‖2.

For (u, v) ∈ Ẽε, we have ‖uint
0 − vintπuv(0)

‖2 = ‖uint
πvu(0)

−
vint0 ‖2 = 2 and ‖u∗0 − v∗πuv(0)

‖2 ≤ 2− ‖u∗0 − v∗0‖2. Thus,

∑
(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 − ‖uint
i − vintj ‖2

≥
∑

(u,v)∈E\Ẽε

‖u∗0 − v∗0‖2 − 2
∑

(u,v)∈Ẽε

‖u∗0 − v∗0‖2

≥
∑

(u,v)∈E\Eε

‖u∗0 − v∗0‖2 − 2
∑

(u,v)∈Eε

‖u∗0 − v∗0‖2

=
∑

(u,v)∈E
p(Zuv, ‖u∗0 − v∗0‖2),

where p(·, ·) is the function from Lemma 3.6. Therefore,∑
(u,v)∈E

p(Zuv, ‖u∗0 − v∗0‖2) ≤

≤
∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 − ‖uint
i − vintj ‖2 ≤ 0.

Since the average degree of G is at least C log k log2 log k
we can apply Lemma 3.6 with γ = c∗η3/(4 log k). We get

Pr
(1

2|E|
∑

(u,v)∈E
‖u∗0 − v∗0‖2 < γ

)
≥ 1− e−n.

If 1
2|E|

∑
(u,v)∈E ‖u∗0 − v∗0‖2 < γ, then by the Markov

inequality, for all but η/2 fraction of edges (u, v) ∈ E,

‖u∗0 − v∗0‖2 ≤ c∗η2/ log k.

Finally, we lower bound the size of Γ0. By definition,

((u, 0), (v, 0)) ∈ Γ0 if πuv(0) = 0 (i.e., (u0, v0) is an edge

of the label–extended graph) and ‖u∗0− v∗0‖2 ≤ c∗η2/ log k.

By the Chernoff bound, |Eε| ≤ (ε+η/2)|E| with probability

(1− o(1)); therefore, πuv(0) 	= 0 for at most an (ε+ η/2)
fraction of edges. Thus, with probability (1 − o(1)), there

are at least (1− ε− η)|E| super short edges.

3.3. Hardness: Semi-Random Instances for ε ≥ 1/2

The problem becomes hard when ε ≥ 1/2. In the full

version of the paper [22], we prove the following theorem.

Theorem 3.8. For every ε ≥ 1/2 and δ > 0, no polynomial-
time algorithm can distinguish with probability greater than
o(1) between the following two cases:

1) Yes Case: the instance is a (1 − ε)–satisfiable semi-
random instance (in the “random edges, adversarial
constraints” model),

2) No Case: the instance is at most δ–satisfiable.
This result holds if the 2–to–2 conjecture holds.

The 2–to–2 conjecture follows from Khot’s 2–to–1 con-

jecture (see the full version of this paper [22] for details).

Definition 3.9. In a 2–to–2 game, we are given a graph G =
(V,E), a set of labels [k] = {0, . . . , k − 1} (k is even) and
set of constraints, one constraint for every edge (u, v). Each
constraint is defined by a 2–to–2 predicate Πuv: for every
label i there are exactly two labels j such that Πuv(i, j) = 1
(the predicate is satisfied); similarly, for every j there are
exactly two labels i such that Πuv(i, j) = 1. Our goal is to
assign a label xu ∈ [k] to every vertex u so as to maximize
the number of satisfied constraints Πuv(xu, xv) = 1. The
value of the solution is the number of satisfied constraints.

Definition 3.10. The 2–to–2 conjecture states that for every
δ > 0 and sufficiently large k, there is no polynomial time
algorithm that distinguishes between the following two cases
(i) the instance is completely satisfiable and (ii) the instance
is at most δ–satisfiable.

4. ADVERSARIAL EDGES, RANDOM CONSTRAINTS

Theorem 4.1. There exists a polynomial-time approximation
algorithm that given k ∈ N (k ≥ k0), ε ≤ ε0, and a semi-
random instance of unique games from the “adversarial
edges, random constraints” model on graph G = (V,E)
with at least Cn log k edges (C, k0 ≥ 2 and ε0 ∈ (0, 1/2)

are absolute constants) finds a solution of value 1/2 with
probability 1− o(1).

Definition 4.2. We say that an edge (u, v) ∈ E is ζ-long
with respect to an SDP solution {ui}, if

1

2

∑
i∈[k]

‖ui − vπuv(i)‖2 > ζ.

Our algorithm proceeds in several steps. First, it solves the

standard SDP relaxation for Unique Games. Then it removes

“long edges” with respect to the SDP solution, and finally it

runs the CMMa [8] algorithm to solve the unique game on

the remaining graph (the CMMa algorithm will again solve

the SDP relaxation for Unique Games — it cannot reuse our

SDP solution).

Now we formally present the algorithm.

Input: An instance of unique games.

Output: An assignment of labels to the vertices.

1) Solve the SDP and obtain an SDP solution {u∗i }.
2) Remove all 1/16–long (with respect to {u∗i }) edges

(u, v) ∈ E from the graph G. Denote the new graph

G∗.
3) Solve the SDP on the graph G∗ and run the CMMa

algorithm.

In the full version of the paper we prove Theorem 4.4

that shows that after removing all 1/16–long edges from

the graph G, the unique games instance contains at most

c|E|/ log k corrupted constraints w.h.p. Since the value of

the optimal SDP is at most ε, the algorithm removes at most

16ε ≤ 16ε0 edges at step 2. In the remaining graph, G′,
the CMMa algorithm finds an assignment satisfying 1 −
O(
√
c) > 3/4 fraction of all constraints. This assignment

satisfies at least 3/4−16ε0 ≥ 1/2 fraction of all constraints

in G.

Remark 4.3. In the previous section we proved that a typical
instance of unique games in the “random edges, adversarial
constraints” model contains many “super short” edges of
the label-extended graph. Then we showed how we can find
an assignment satisfying many super short edges. Note, that
edges in the set Eε are not necessarily short or long. In
this section, we use a very different property: in the typical
instance of unique games in the “adversarial edges, random
constraints” model, most edges in the set Eε are long.
However, note that the label-extended graph does not have
to have any super short edges at all.

Theorem 4.4. Let k ∈ N (k ≥ k0), ε ∈ [0, 1], c ∈ (0, 1).
Consider a graph G = (V,E) with at least (C/c)n log k
edges and a unique game instance on G (C and k0 are
absolute constants). Suppose that all constraints for edges

in Eε are chosen at random; where Eε ⊂ E is a set of
edges of size ε|E|. Then, the set Eε contains less than
c|E|/ log k 1/16–short edges w.r.t. every SDP solution
{ui} with probability 1− o(1).

We give the proof in the full version of the paper [22].

REFERENCES

[1] M. Alekhnovich. More on Average Case vs Approximation
Complexity. Proceedings of the 44st IEEE Symposium on
Foundations of Computer Science: pp, 298–307, 2003.

[2] G. Andersson, L. Engebretsen, and J. Håstad. A new way
to use semidefinite programming with applications to linear
equations mod p. Journal of Algorithms, Vol. 39, 2001, pp.
162–204.

[3] S. Arora, B. Barak, and D. Steurer. Subexponential Al-
gorithms for Unique Games and Related problems. Pro-
ceedings of the 51st IEEE Symposium on Foundations of
Computer Science, 2010.

[4] S. Arora, R. Impagliazzo, W. Matthews, and D. Steurer. Im-
proved algorithms for unique games via divide and conquer.
ECCC Report TR10-041, 2010.

[5] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N.
Vishnoi. Unique games on expanding constraint graphs are
easy. Proceedings of the 40th ACM Symposium on Theory
of Computing, pp. 21–28, 2008.

[6] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev and D.
Steurer. Rounding Parallel Repetitions of Unique Games,
Proceedings of the 49th IEEE Symposium on Foundations
of Computer Science, pp. 374–383, 2008.

[7] A. Blum and J. Spencer. Coloring Random and Semi-
Random k-Colorable Graphs. J. Algorithms, vol. 19, no.
2, pp. 204–234, 1995.

[8] M. Charikar, K. Makarychev, and Y. Makarychev. Near-
Optimal Algorithms for Unique Games. Proceedings of the
38th ACM Symposium on Theory of Computing, pp. 205–
214, 2006.

[9] E. Chlamtac, K. Makarychev, and Y. Makarychev. How
to Play Unique Games Using Embeddings. Proceedings
of the 47th IEEE Symposium on Foundations of Computer
Science, pp. 687–696, 2006.

[10] A. Gupta and K. Talwar. Approximating Unique Games. Pro-
ceedings of the 17th ACM-SIAM Symposium on Discrete
Algorithms, pp. 99–106, 2006.

[11] U. Feige. Relations Between Average Case Complexity and
Approximation Complexity. Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, pp. 534–543,
2002.

[12] U. Feige and J. Kilian. Heuristics for Semirandom Graph
Problems. Journal of Computing and System Sciences, vol.
63, pp. 639–671, 2001.

[13] U. Feige and R. Krauthgamer. Finding and Certifying a
Large Hidden Clique in a Semi-Random Graph. Random
Structures and Algorithms, vol. 16(2), pp. 195–208, 2000.

[14] V. Guruswami, R. Manokaran, and P. Raghavendra. Beating
the Random Ordering is Hard: Inapproximability of Max-
imum Acyclic Subgraph. Proceedings of the 49th IEEE
Symposium on Foundations of Computer Science, pp. 573–
582, 2008.

[15] V. Guruswami and P. Raghavendra. Constraint satisfac-
tion over a non-boolean domain: Approximation algorithms
and unique-games hardness. Proceedings of APPROX-
RANDOM, 77–90, 2008.

[16] M. Jerrum. Large Cliques Elude the Metropolis Process.
Random Structures and Algorithm, vol. 3 (4), pp. 347–359,
1992.

[17] S. Khot. On the power of unique 2-prover 1-round games.
Proceedings of the 34th ACM Symposium on Theory of
Computing, pp. 767–775, 2002.

[18] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal
inapproximability results for MAX-CUT and other 2-variable
CSPs? SIAM Journal on Computing, vol. 37(1), pp. 319–
357, 2007.

[19] S. Khot and O. Regev. Vertex cover might be hard to
approximate to within 2− ε. Proceedings of the 18th IEEE
Annual Conference on Computational Complexity, 2003.

[20] S. Khot and N. Vishnoi. The Unique Games Conjecture,
Integrality Gap for Cut Problems and Embeddability of Neg-
ative Type Metrics into �1. Proceedings of IEEE Symposium
on Foundations of Computer Science, pp. 53–62, 2005.

[21] A. Kolla. Spectral Algorithms for Unique Games Pro-
ceedings of the Conference on Computational Complexity,
pp. 122–130, 2010.

[22] A. Kolla, K. Makarychev, Y. Makarychev. How to Play
Unique Games against a Semi-Random Adversary. Preprint.
ArXiv:1104.3806v1 [cs.DS].

[23] K. Makarychev and Y. Makarycev. How to Play Unique
Games on Expanders. WAOA 2010. Lecture Notes in
Computer Science, vol. 6534/2011, pp. 190–200, 2011.

[24] P. Raghavendra. Optimal algorithms and inapproximability
results for every CSP? Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pp. 245–254, 2008.

[25] P. Raghavendra and D. Steurer, How to Round Any CSP.
Proceedings of the 50th IEEE Symposium on Foundations
of Computer Science, pp. 586–594, 2009.

[26] A. Samorodnitsky and L. Trevisan. Gowers uniformity,
influence of variables, and PCPs. Proceedings of the 38th
annual ACM Symposium on Theory of Computing, pp. 11–
20, 2006.

[27] L. Trevisan. Approximation Algorithms for Unique Games.
Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science, pp. 197–205, 2005.

